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Abstract. The study focuses on creating symbol-shaped flame designs by optimizing flame dynamics, using 

machine learning techniques integrated with advanced combustion modelling. This research addresses the 

limitations of traditional pyrotechnic systems, which lack precise control over flame shapes, by introducing a 

method that uses differentiable physics simulations for shaping flames. The method uses the optimization 

framework PhiFlow and includes radiative heat loss and chemical kinetics for improved accuracy. Machine 

learning is used not only to train and adapt the model but also to determine the physical parameters that correspond 

to the actual observed behaviour of the flames. However, it is also important to mathematically and analytically 

evaluate the results obtained to ensure their accuracy and relevance. Results demonstrate the successful formation 

of custom flame shapes in a 2D simulated environment, with promising alignment to real-world flame stage 

projector behaviour. This approach enables control over flame shapes and dynamics, expanding creative 

possibilities in stage design and interactive art while proving valuable for applications requiring detailed control 

of dynamic systems, such as pyrotechnics, performance art, and educational demonstrations. 
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Introduction 

We suggest a device in which several flame emitting nozzles are placed side by side and carefully 

chosen fuel amount and timings enable us to create customizable flame shapes. Machine learning 

incorporated differentiable physics [1] simulations are used for automatically calculating the fuel 

timings in order to create the required flame shape. This type of simulation could potentially be applied 

to real-stage flame equipment. Flame throwers create customizable flame shapes, such as company 

logos, words, symbols, or other designs, which can be showcased during art performances, thus 

expanding the possibilities of artistic expression. Machine learning embedded in the model helps ensure 

shape accuracy. At the same time, differentiable physics provides gradient-based training to accurately 

model and control flame dynamics in real time, allowing fire effects to be created with high accuracy 

and adaptability. This approach allows for the real-time generation of intricate flame patterns that can 

be adapted to a wide range of performance scenarios.  

Earlier research indicates that employing differential physics can enable real-time control of 

simulations [2] and animate smoke through control forces [3]. Other studies have illustrated that 

manipulating fluid flows can produce dynamic shapes [4] while a more recent method demonstrates that 

differential programming permits real-time 3D object motion control solely by adjusting their positions 

within the fluid based on observations [5]. In our work, we develop control policies using differentiable 

physics (DP) simulations. And recent progress in DP has revealed its robust ability to tackle simulated 

inverse problems and complex control tasks [2; 6-8]. Nonetheless, simulating flames remains 

particularly challenging because accurately modelling cooling and fuel dispersion is crucial for 

combustion processes. Although various approaches exist for representing fire and flames [6; 9], not all 

tools consider ignition and radiation factors, limiting their applicability in realistic scenarios. 

Materials and methods 

Shaping flame concept and aim. This work builds upon our previous study [10], which established 

a proof of concept demonstrating that it is possible to form symbolic shapes using hot air flows and 

flames. To evaluate the concept viability, we began by developing a simplified model of hot air flow. 

This model provides insights into the dynamics of heated air and serves as a foundation for further 

exploration of shape formation. It allows us to study how flames can be manipulated to create structured 

visually impressive creations, paving the way for more advanced simulations that incorporate complex 

combustion processes. The current stage extends that idea by exploring the feasibility of controlled 

flame shaping and its potential applications in real-world scenarios. Figure 1 presents a schematic 

depiction of the envisioned setup, where four flame projectors operate in synchrony to generate a circular 

flame pattern.  
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Fig. 1. Schematic illustration of the envisioned setup,  

where four flame projectors produce a circle of flames 

In Figure 2, we demonstrate the generation of glowing letters “E-D-I” by applying differentiable 

physics-based optimization from previous research. The simulation output (left) is compared to the 

target shape (right), highlighting the model’s ability to reproduce desired forms with high accuracy. The 

current research extends this idea by exploring the feasibility of controlled flame shaping and its 

potential applications in real-world settings. 

  

Fig. 2. Creating glowing letters “E-D-I”: left side – simulation-generated letters;  

right side – target letters 

Governing equations of combustion and flame dynamics convection simulation and control. 

To move beyond simple hot air flow and simulate combustion more realistically, we extended our initial 

simulation model by integrating additional terms specific to fire dynamics. For this purpose, we adopted 

the combustion modelling framework by [9] implemented using the PhiFlow [11] simulation library, 

which serves as the basis for constructing our realistic fireball simulation. 

The use of the PhiFlow framework allows for flexible and efficient simulation of coupled PDEs 

with support for differentiable programming, making it well-suited for learning-based control and 

optimization in combustion scenarios. 

The equations presented below represent the fundamental mathematical formulation for modelling 

flame combustion processes. These partial differential equations describe incompressible fluid flow and 

incorporate the essential physical principles needed to simulate flame behaviour: mass conservation, 

momentum exchange, and heat transport.  

Mass conservation (continuity equation for incompressible flow):  

 ∇ ∙ 𝑢 =  0, (1) 

where 𝑢 =  (𝑥, 𝑦, 𝑡) – velocity field. 

Momentum conservation (Navier–Stokes equation): 

𝜕𝑢

𝜕𝑡
 +  (𝑢 ∙ ∇)𝑢 =  −

1

 𝜌
∇𝑝 +  𝜈∇2𝑢 +  𝑔, (2) 

where 𝜌 – fluid density; 

 𝑝 – pressure; 

 𝜈 – kinematic viscosity; 

 𝑔 – includes gravity and buoyancy. 
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Energy conservation (heat equation): 

𝜕𝑇

𝜕𝑡
 +  (𝑢 ∙ ∇)𝑇 =  𝛼∇2𝑇 +  𝑄, (3) 

where 𝑇 – temperature; 

 𝛼 is the thermal diffusivity 𝛼 =  
𝑘

𝜌 𝑐𝑝
; 

 𝑄 is the heat source due to combustion. 

Mass fraction equation (mass fraction transport): 

𝜕𝑌

𝜕𝑡
 +  (𝑢 ∙ ∇)𝑌 =  𝐷∇2𝑌 +  𝜔, (4) 

where 𝑌 – mass fraction of a species (fuel, etc.),  

 𝐷 – diffusion coefficient; 

 𝜔 – accounts for chemical reactions. 

To enhance the physical realism of the model, a radiative heat transfer term was introduced to 

account for thermal radiation. The resulting heat equation captures the balance between convective and 

conductive heat transport, heat generation from combustion, and radiative heat loss, ensuring a more 

accurate representation of energy flow within the system. Heat change is sum of conduction, combustion 

and radiation: 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
 +  𝑢 ∙ ∇𝑇)  =  𝜆Δ𝑇 +  𝑞 − 𝜎𝜀(𝑇4 − 𝑇𝑎

4), (5) 

where 𝜌 – fluid density,  

 𝐶𝑝 – specific heat,  

 𝑇 – temperature,  

 𝑢 – velocity,  

 𝜆 – thermal conductivity; 

 𝑞 – heat from combustion.  

The final term models radiative heat loss using the Stefan–Boltzmann law, where 𝜀 is emissivity, 

and 𝜎𝜀 is effective radiation coefficient, but 𝑇𝑎 is ambient temperature. 

For the simulation to remain physically accurate and stable, appropriate boundary and initial 

conditions were defined alongside the governing equations, playing a key role in maintaining physical 

and computational consistency. Boundary conditions on walls (𝑢 =  0) or (𝑢 ∙ 𝑛 =  0, ∇ × 𝑢 =  0), 

open boundaries (simulation above and below the domain): e.g., 𝑝 =  1013.25 Pa, 
𝜕𝑢

𝜕𝑛
 =  0, initial 

conditions: 𝑢(𝑥, 0) =  𝑢0, 𝑇(𝑥, 0) =  𝑇0, 𝑌(𝑥, 0) =  𝑌0.  

Results and discussion 

Model training and simulation process. Our simulation is created in a two-dimensional 

rectangular domain with an aspect ratio of 1:2 concerning x and y, respectively, where the lower 

boundary is lined with 32 nozzles emitting upward fuel streams. A 2D model was chosen to strike a 

balance between physical realism and computational efficiency. While it simplifies the full complexity 

of real flame behaviour, it allows for rapid experimentation, intuitive visualization, and effective 

gradient-based optimization of flame shapes using differentiable physics. The vertical dimension is 

suitable for the natural growth and development of flame-like formations. Our simulation is performed 

in a 2D environment where ignited fuel is discharged through the nozzles as controlled vertical jets to 

create spatial configurations of different shapes and appearances. For the simulation, we use the PhiFlow 

system [6], which facilitates physics-based modelling and machine learning. This system provides 

differentiated fluid dynamics, allowing accurate optimisation of flow behaviour based on gradients. 

We use the training method from [12] on rigid object manipulation, we extend the same training 

strategy to flame-based tasks (see Figure 3).  
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Fig. 3. Integrated training process. Sarting from the initial state S₀ (temperature and speed):  

at each step, the current state Sᵢ and control input uᵢ are sent into the solver to get the next state;  

after the final step, the loss is calculated and used to improve the control inputs by sending the error 

backwards through all steps 

The top diagram represents the simulation process, where the PhiFlow solver iteratively updates the 

system by using the current control inputs ui and state Si to determine the next state Si+1. 

The solver adjusts temperature and velocity fields according to advection dynamics and 

incompressibility conditions. The control variables learned nozzle speeds and temperature are optimized 

to shape the flow. The environmental state tracks temperature and velocity throughout the domain. The 

loss is calculated as the summed squared error between simulated flame intensity and grayscale target 

images (see Figure 4). The bottom part of the training scheme shows a gradient-based optimization 

process using the Adam optimizer [13] with a learning rate of 0.05 over 1000 iterations. 

After evaluating the results and analysing the loss function behaviour of the differentiable physics 

(DP) method, we observe that DP performs very good, demonstrating faster convergence and a smoother 

loss reduction throughout the training process, see Figure 4.  

  

Fig. 4. Differentiable Physics (DP) training loss curve over training iterations. The x-axis 

indicates the number of training steps, but the y-axis shows the loss values 

Simulation of real fireball behaviour. We aim to develop a two-dimensional simulation that 

accurately reproduces the behaviour of flames generated by stage equipment. For model training, slow-

motion recordings of actual propane-butane flame devices were captured, clearly documenting the 

ignition process, flame growth, and cooling phases. Multiple blower setups including single, dual, 

sequential, diagonal arrangements, and combinations of up to four blowers were systematically 

evaluated, generating flames exceeding 2.5 meters in height, with recordings taken from 5.40 meters. 

To ensure the reliability of flame shape simulation, we developed a model of a single flame projector, 

aligned with the behaviour of its real-world flame. The simulation is grounded in physically accurate 

combustion equations, enabling precise replication of flame dynamics. The flame projector was trained 

to emit fuel in 50 millisecond intervals, capturing the transient characteristics of combustion.  

The flame emitter (blowing profile) is modeled as a horizontal line segment emitting fuel upward 

with learnable velocity 𝑉(𝑥), and fuel 𝐹(𝑥) profiles along the line are 1D learnable variables, discretized 
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over the simulation grid. Activations occur over (𝑡1 ,𝑡2 ) with smooth transitions controlled by learnable 

slopes: 𝑠1 (activation slope) for how quickly the flame starts at 𝑡1 , and 𝑠2 (deactivation slope) for how 

quickly it fades at 𝑡2 : 

 𝑅(𝑡) =  𝜎(𝑠1(𝑡 − 𝑡1 ,))[1 − 𝜎(𝑠2(𝑡 − 𝑡2 ,))], (6) 

Then the blower velocity is 𝑢(𝑥, 𝑡) =  (0, 𝑉(𝑥), 𝑅(𝑡))) and fuel injection is 𝐹(𝑥)𝑅(𝑡). 

From this training process, we extracted key physical parameters, which were subsequently applied 

to test the model’s performance across a range of scenarios. As a result, we created a reliable simulation 

model that closely matches how a real flame projector works and can be used to generate and study 

different flame shapes. 

The following physical parameters were obtained through training to accurately simulate the 

behaviour of a real flame projector. The radiation threshold was determined to be 1249.76, with a 

radiation epsilon of 0.72, indicating the sensitivity of the model to heat radiation. The diffuse constant, 

which influences the spread of the flame, was estimated at 0.00069. The buoyancy factor, reflecting the 

upward force due to heated air, was set at 0.61, while the velocity decay, determining how quickly the 

flame movement slows down, was 0.0064. The model also defined a temperature range between –

1.68 °C and 28.25 °C, and the fuel emission duration (blowing time) was established as 

29.93 milliseconds. These parameters enable realistic and stable flame behaviour within the simulation 

environment. The trained single-blow simulation is illustrated in Figure 5. 

 

Fig. 5. Fireball simulation. Left side - trained simulation with one blow (32x64). Right side -real 

flame frames with specified intensity (grayscale image) 

Our single-flame simulation model was adapted to replicate a two-blow flame projector by reusing 

the previously trained physical parameters (see Figure 6). The sequence includes 50ms of fuel, a 50ms 

pause, and a second 50ms burst. The results show a good match between the simulation and the real-

world behaviour, with both producing an elongated second flame, suggesting the model is performing 

accurately. 

  

Fig. 6. Fireball simulation: left side – trained simulation with two-blow (32x64);  

right side – real flame frames with specified intensity.  
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We extended the single-flame simulation model to represent four flame projectors (in Figure 7), 

each performing a burst simultaneously. The same trained physical parameters were used, with fuel 

injection lasting 25ms per projector. In the real-world setup, ignition was inconsistent – two of the 

projectors only ignited after a second spark. The simulation also showed limitations, as the flames 

merged in the center, drawing in air from the sides. To achieve more realistic results, a transition to 3D 

simulation is needed. 

 

Fig. 7. 4-stage flame simulation: left side – trained simulation with 4 fire blowers;  

right side – real flame frames with 4 blowers and a certain intensity 

Conclusions 

This work demonstrates that a data-driven simulation model trained on single flame bursts can 

successfully generalize new scenarios, such as handling dual-flame emitters, indicating good model 

robustness. The 2D simulation framework effectively captures certain structural aspects of flame 

behaviour and provides a useful platform for initial exploration and optimization. However, the 

limitations of two-dimensional modelling become evident in more complex configurations – such as 

with four flame sources – where air flow and oxygen distribution require full spatial representation. To 

accurately capture such interactions and achieve greater physical fidelity, future work must have 

transition to 3D simulation environments, enabling more realistic modelling and enhanced control of 

flame-based phenome. The results demonstrate that it is possible to successfully model the thermal 

effects and flame plume formation in this way, making it useful for both animations and practical 

applications. Exploring multiple flame emitters and alternative fuel types, such as alcohol-based burners, 

offers promising insights for advancing precise flame control in future applications. 
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